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1. INTRODUCTION

In conventional beamforming it is well known that the estimated complex wave-
number spectrum of the incident noise distribution is the convolution of the
true wave-number spectrum with the Fourier transform of the array window.
Since the array window is zero outside a finite region, a consequence of this
convolution is to limit the wave-number (and hence angular) resolution.
Deconvolution techniques can be used to remove (or minimise) the effect of the
array window and consequently improve the estimate of the wave-number spectrum.
Unfortunately deconvolution methods do not always provide a unique estimate of
the wave-number spectrum and constraints need to be imposed to obtain a unique
solution.

As early as 1954 Bracewell and Roberts(ref.1) proposed an iterative
deconvolution technique which progressively sharpens the estimated distribution
and ultimately converges to a unique solution - termed the 'principal solution'.
This solution has the additional property that it contains no wave-number
components which give a zero output when convolved with the array response.
Although this 'principal solution' has greater resolution than the conventional
beamformer estimates, its resolution is still limited and it also suffers from
ringing, i.e. an increase in the sidelobe levels. Its effect in terms of the
spatial autocorrelation function can readily be seen. For a continuous line
array the method replaces the Bartlett (or triangular) window, multiplying the
spatial autocorrelation distribution by the square window. The effect of this
is well known; the resolution is doubled at the expense of increased sidelobe
levels.

However, the technique has received considerable attention. Axelrod et al
(ref.1) have shown how the method can alternatively be formulated in terms of a
least squares expansion of the wave-number power spectrum using a set of
Fourier coefficients. Anderson and Tittle(ref.1), by defining the principal
solution mathematically have shown that the principal solution only retains a
finite number of terms in the expansion. Furthermore all these terms corres-
pond to components which oscillate in wave-number (i.e. essentially angle)
below a certain frequency.

Further work by Wilson(ref.1) and in particular McDonough(ref.1) has
developed the method and applied it to some numerical examples. McDonough has
also generalised the iterative method of Bracewell and Roberts to an array of
arbitrary geometry.

The techniques discussed all suffer from one common limitation; i.e. the
deconvolution is effected using the beam powers. Thus the relative phase
information of either beams or receiver outputs is lost. A method overcoming
this limitation has been proposed by Nuttall(ref.1) whereby the incident field
(i.e. the noise field), in a similar manner to Axelrod et al, is expanded in a
finite set of Fourier coefficients. However, instead of forming a least
squares approximation using beam powers, Nuttall's method uses the crosspower
spectral matrix of the receiver outputs. Yen(ref.2) has also adopted this
approach, applied it to a linear array and obtained an expression for the
coefficients of the Fourier expansion in terms of the relative phase delays of
the receivers.

The expansion of the noise field in a Fourier series in wave-number

(i.e. d cos 0) also deserves some comments. In this approach the lowest order

term represents the isotropic noise component and to represent anisotropic noise
fields higher order Fourier terms are required. In the limit a single plane
wave, represented by a delta function distribution of the noise field, requires
an infinite number of coefficients for exact representation. The basis of this
paper is to adopt what can be conceptually thought of as being almost the exact
opposite to the above approach, that is, the incident field at the frequency of
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interest is assumed to be composed of N independent plane waves (i.e. N delta
functions) from predetermined directions and the field is assumed homogeneous.
This reduces the estimation problem to one of estimating only the complex beam
amplitudes or powers using an array of K discrete receivers.

This assumption has been successfully exploited by d'Assumpcao(ref.2) to
derive some new quadratic estimators based on maximum likelihood and minimum
variance criteria.

Under these assumptions the phase delays corresponding to the selected
directions may be incorporated in the deconvolution process which is represented
in matrix formulation since both the number of receivers and arrivals is finite.
The method, although formulated for a two-dimensional noise field may readily be
extended to three dimensions. In Section 2 an iterative deconvolution
technique, which is a matrix extension of the method used by Bracewell and
Roberts, is formulated under the above assumptions. Two similar techniques are
proposed which use the array response at the frequency of interest to deconvolve
either the complex beam outputs or the beam powers. The assumption that the
directions of the N plane waves are known enables the total leakage in any beam
to be estimated and subtracted out. The iterative method is used to
successively refine and subtract out the leakage in all beams from the other
beams. It is then shown in Section 3 that the limits of these iterative methods
converge to a generalization of some particular quadratic estimators derived in
reference 2

Recently, Yen(ref.3) using a similar assumption for the incident noise field
has used the Prony method to estimate the direction and powers of the incident
N plane waves for a line array. The expressions derived in this report
together with the examples of Section 5 can be used to show'an equivalence of
the power deconvolution method to the linearized part of the Prony method used
by Yen.

In Section 4 the suitability of these estimators in the presence of noise
with an unknown covariance matrix is discussed and some gensral results are
proved.

Finally some examples of the application of the method to a line array of K
equispaced receivers are given.

2. FORMULATION OF THE ITERATIVE METHOD

he assumption that the incident field consists of N independent plane waves

enables xj, j = 1, 2, ..., K (the complex spectral amplitude of the output of

the j-th receiver at a frequency f) to be expressed as a linear combination of

k (the complex spectral amplitude of the k-th plane wave signal at some

arbitrary reference point). The physical geometry of the array determines this
particular combination. It follows that:

N

xj = L VjkYk  (1)

k=l

where Vjk = exp(i0jk) and Ojk are the phase delays corresponding to a signal

from the k-th direction at the j-th receiver. For the example of a line
sin k

array of equispaced receivers *jk = fj c d where d is the separation
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of adjacent receivers. Denoting*

T

Y = (Yl' Y2' "' YN)

and

V Vjk

a K x N complex matrix, equation (1) can be rewritten as:

x = Vy. (2)

2.1 Deconvolution of complex beam outputs

The output of a conventional beamformer, denoted as y(O) is then given
as*:

(0) VHx
NK

(0),In order to deconvolve the y*U90s the method of progressive substitutions

as discussed by Bracewell and Roberts is used. However, since the x.'s are1
assumed related to the yj's by equation (2) it is now possible to deconvolve

not just with respect to the array window but also with respect to the phase
delays ij"(

If the initial estimate, y(0), was the incident noise field distribution
then the receiver outputs would be

x = Vy( 0) (

Hence the output of the conventional beamformer would be Wy( 0) whereAH (0)
W = -. A measure of the error e in the original estimate y(O) is

then defined by:

e = (O) 0wy().

* T denotes the transpose and H the complex transpose of either a vector or

a matrix.
* The choice of NK rather than K as the normalizing factor ensures convergence

of the iterative series (see Appendix II) at the expense of biasing the
power spectral estimates. The reduction of this bias is discussed in
Section 3.
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A new approximation to the incident distribution is obtained by correcting
for this error, viz:

(1) (0) (0)
y = y +C

In general, let y(n) represent some nth order approximation to the
incident distribution. If this represented the true distribution then the

output of a conventional beamformer would be Wy(n). The error term between

this output and the observed output of the beamformer, y , is denoted as

e (n) and is defined by:

(n) y(O) ( wy(n) (3)

The method of progressive substitutions then implies that a new

approximation, y(n+l), to the true incident distribution can be chosen as:

y(n+l) = y(n) + (n)

This reduces to:

y(n+l) = y (0) + (I W)y(n) (4)

by virtue of equation (3).
An alternative formulation of the iteration which gives the same

results but has a direct physical significance will now be given.

Consider the ijth element of W for i P j; it represents the (biased)

response of the ith beam to a plane wave from the jth direction. Thus a
given row of NW is the amplitude polar response of the array evaluated at
the wave-numbers (or angles) corresponding to j = 0, 1, • N-1. Now

suppose y (n) is some approximation to the incident distribution. The
thcomponents which distort, through leakage, an estimate of i beam will be

given by:

W (n)

This, for all beams, reduces to

(W - I)y(n)

since, W = 1/N. In order to attempt to cancel the effect of these

sid.,lobes the 'leaked' components can be subtracted from y(O); the
conventional estimate of the spectrum. This leads to a better approxima-

tion of the wave-number spectrum denoted as y (n+) which is given

4- --- , --_____.___________•___._______,____
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by equation (3). The convergence rate of the iteration will be increased
by ensuring that the off-diagonal elements of W are small. This is
alternatively interpreted as requiring the array polar diagram to have
nairow beamwidth and low sidelobes.

2.2 Deconvolution of beam powers

In this section the iterative technique is used to deconvolve the beam

powers. The conventional estimate of the N beam powers s(0) is defined by:

sP) = < x i>(5)

I IHXXJ 2

whereK >denotes the ensemble average (in practice replaced by a time
average).

Define the vector m by:

m -- (9 x*>

where ® denotes the direct product' and

A = V 0 VH  (6)

where 0 is the Khatri-Rao product (i.e. (A ® B)ij- ak blj where

i = (k - 1)K + t) and the dimension of A is K2 x N. Then equation (5)
for s. can be written as:

A(0) Am

{NKj2

Also defining:

S= <yyH)

and substituting in equation (5) for x it follows that:

A (VHVSA)..
S. =--

1NK12

= (WSW)ii

Furthermore the assumption that the signals from the differing directions
are uncorrelated implies that S is diagonal and so the above equation
reduces to:

s (0) W OWTs
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where*

5. = S..1 11

and

T) = )ij (VV)

(W [] W)i NK12  (7)

Thus an initial approximation to s can be s(O) which would result in an
error term of:

e (0) = s(0) - W 0 wTs(O) (8)

which can be used to correct the original estimate, i.e.

s1) s() + eC0)

This process is now repeated and the general iterative equation becomes:

s(n+l) = s(0) + (I - w 0wT)s(n)

T
As in the previous section the iteration matrix, i.e. W [ W , has a

physical interpretation. From equation (7) it follows that N2W 9 W T is
simply the polar diagram of the beam powers and:

7-- T (n)z (W GI WT ) i j sj

is the leakage into the ith beam of the powers from the N-i other
directions. Thus the technique may be considered as reducing leakage of
powers (either because of a broad beamwidth or high side lobe levels) from
one beam to another by using the 'a priori' knowledge of the array's polar
response.

* The Hadamard product, El , of two matrices A and B, is defined by:

(A ED B)ij = AijBij

.. . . . - -
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3. SOLUTION AND CONVERGENCE OF THE ITERATIVE METHOD

In this section and in the remainder of this paper, let U denote either of
the N x N matrices, i.e. W or W E] wT and let z represent either y(n) or s(n)

From either equation (4) or (7) it follows that:

z(n) = (I + (I - U) + ... (I _ U)n)z(O) (9)

and (see Appendix I) this can be shown to reduce to:

z(n) = (I - -U)n+l )uz ( 0 )

where U is any generalized inverse(ref.4) of the matrix U. Unfortunately
convergence of this series does not hold in general since the eigenvalues of
(I - U) are not all less than 1.

3.1 Convergence

A simple modification of the recurrence relation allows convergence of
the iteration. Replace equation (9) by:

z(n) = z ( 0 ) + (XI - U)z(n -l)

The effect of the X is to modify the recurrence formula to:

z(n) = Xz(n-l) + (n-1)

where e (n-1) is the error term defined by either equation (3) or
equation (8). As shown in Appendix B the restriction 0 < X < 1 will
guarantee convergence of the series. This requirement also has a
heuristic physical interpretation since the condition that X < 1 can be
considered as automatically allowing for the fact that for N > K there
must always be leakage from one beam to another. This is a reflection
of the fact that it is impossible, for N > K, to steer more than K-1 nulls.
As a special case, for N = K and V non-singular, convergence of the series
for X = 1 is possible since it is now possible to steer K-1 nulls and so
prevent any leakage into a selected direction.

3.2 Limit (beam amplitudes)

The matrix identity

(I-(XI - U))( XI - U)+(XI - U) 2 + .. +(XI - U)n)= ( )l( lU)n + l) (10)

always holds. Since X < 1 and W = (VI)/(KN) it follows that (I-X)I+W
is always non-singular. It then follows that:

y(n) = nI(I - 'n'l] [+ l- X)I 1 w-ly(O)

- Ii l + ....
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However, since the eigenvalues of XI - W are always strictly less than 1
(see Appendix B) it follows that:

lim,(XI -W) = 0.
ni60

Thus

lir y(n) = (I - X)I + W 1(0)

n*400  ~-
= -l(0H)

(I - X)I + V gx

which, in general will give different estimates for differing values of X.
However, from reference 3, the Moore-Penrose pseudoinverse of V, denoted
as V is defined as:

V+ = lim (1 + V HV)IvH
6+ 0

It then follows that:

lim lim y(n) = V+x
X+l n+o

Thus, as a generalization of conventional beamforming VH is replaced by
V+ the Moore-Penrose pseudoinverse.

It is worth noting that any choice of scaling for yO which ensures
convergence gives rise to the same limiting solution V x. However as
discussed in Section 2 the above solution is biased. A sensible con-
straint to further impose is that all beams have the same maximum response
in their look directions. Since the output of the inverse processor in

the nth direction due to a plane wave incident from that direction is:

(V vn) n ,

where vn is the nth column of V, it follows that for unity response in

the look direction the appropriate form is:

(Vx) i
Yi (V +

or

(V~x) i
(VYV)ii
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3.3 Limit (beam powers)

Since the matrix identity (equation (10)) always holds it follows that:

5(n) = I -X- _ W EWHn~lj[ - ) 0 3'(0)

provided the inverse of I(1 - X)I + W [] A exists. The further matrix
identity(ref. 5):

.(VHV)F(VTV*) _ (V 0 V*)H(V 0 V*) (11)

guarantees that an inverse exists for X < 1. Consequently since the
eigen-values of (XI - W) are always strictly less than 1 it follows that:

lir (XI - W ]WT) n~ l = 0

and so

lim S(n) = (j - X)i - WUW 1
nf 00

Using equation (11) this reduces to

1-, 2
n&O IK12 )KNt2

where A = V 0 V*. As in the previous case the limiting form as )+1 is
the pseudoinverse and so an 'optimum' processor is:

s = A+m

and substituting for A and m this becomes:

s = (V or*) + <x ®x*>

As before the limiting solution is independent of the scaling of s ( 0 ) and
a solution which allows unity response in the look directions is given by:

s (A'm)j

3 (A+A)..

U _ , i



WSRL-0141-TR - 10 -

4. DISCUSSION

4.1 Complex beam outputs

The estimator Vx, termed the inverse estimator, has a number of
interesting properties which relate it to some quadratic processors which
have recently been proposed.

(a) If V is square and non-singular (i.e. K = N) then V+ = V - . For a

chosen direction the processor V-1x steers nulls in the remaining
(K - 1) directions and thus forms an unbiased estimator of the wave-
number spectrum. This estimator has been derived in reference 2
using a maximum likelihood technique.

(b) If for an arbitrary N, the K rows of V are linearly independent

then V = VH(v) -1. Apart from the scaling factor, (V+V)n, this
is the minimum bias estimator derived in reference 2. nn

(c) In general a class of solutions of the equation:

x Vy (12)

where VV-y y, is given by:

y = Vx

where V is any generalized inverse. The solution derived here,

V , has the additional property that of all the y's which satisfy

equation (12), it is the one with the minimum norm(ref.4). That

is 11y112 = J yi12  is also minimized. Alternatively if the
1

receiver outputs, i.e. the xi, are uncorrelated then the pseudo-

inverse is the one which also minimizes the norm of the weight
vectors and thus limits the superdirectivity of the array.

(d) In general the effect of noise (and also signals arriving from
directions not accounted for by the vjk's) will be such x is only

approximately equal to Vy. The choice of y = V+x as an estimator

is still an appropriate one since it is shown in reference 4 that
it is the vector of minimum norm which minimizes lix - Vy112. That
is, the estimator y = V x is the best (in a least squares sense)
plane wave solution to the problem subject to the constraints
imposed by the assumed source directions.

HA
(e) The total power output from the receivers is x x . If y is defined

as 9 = Ux then, when U is any unitary matrix (UHU = I), the total

power in the 's, y, equals that in the x's. This is analogous
to Parseval's theorem in Fourier analysis and is an expression of
the conservation of energy. If the V's are not unitary then this
equality does not hold but a sensible criterion would be to require
that it holds as an approximation. This then implies that:

Ix x - I (13)

should be minimized.
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The general solution A which minimizes:

IIx - Vyll 2

is given by:

+

y= Vx + (I - V+V)z

where z is an arbitrary vector. Substituting for y, expression (13)
reduces to:

X x x - z + zHVHz (14)

where use has been made of two identities for the Moore-Penrose
pseudoinverse:

V+ = V

and

(VV) = VV .

Differentiating the above with respect to z and equating to zero
then implies that equation (14) is minimized when:

z = V+Vz

Hence the expression for 9 reduces to:

A +
y = Vx

Thus the Moore-Penrose pseudoinverse is that solution minimizing:

H - AH

IIX X _ y 9112

i.e., it most closely conserves the power.
An important consequence of this result is that if there is a

strong source in the x's with a wave-number not accounted for by
the V's then there will be considerable leakage of the power of
this source into the estimated yi. The (dis)advantage of this

will depend on whether this strong source is either a desired
signal or an interference.

(f) Idempotency of solution

Suppose the inverse estimates, i.e. y = V+x, are the true
distribution of sources. The receiver outputs, Z', become:

-= VV+x



12-

and the output of the inverse estimator is:

V + = V +VV +x

This property of the inverse estimator is termed idempotency
and it is precisely the lack of this property for the conventional
processor that allows the iteration to be effected.

4.2 Beam powers

(a) If V is square and non-singular (i.e. K = N) and since:

W OWT _ (VO V*) (V 0 V*),INK 12

then W El WT is positive definite and hence non-singular. Thus

the series is convergent for X = 1 and the limit becomes:

(W IWT) -1s (0)

which on substitution of equations (6) and (11) becomes:

INK1 2 (A 1A) -1s (0)

which has been derived in reference 3 as a least squares estimator
(see also below) under some more general conditions.

(b) From Section 3 the approximation:

m -- VSV H

where S is diagonal can be rewritten as

m - As

where s is the vector of the diagonal elements of S. As in the
previous section a particularly suitable approximation is:

=A+m

since in addition to minimizing:

U m - AsII2  (or lir - vsvHII2)

j
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it also minimizes:

1Ill2

and hence limits the superdirectivity of the estimator.

5. EXAMPLES

Consider a linear array of K equispaced receivers separated by a distance d.
If the incident distribution is assumed to be two-dimensional and composed of
N plane waves with wave numbers k C= (2r sin 0 .)/X) then the matrix of phase
delays, V, has the form:

i
V.. = i

where

27ridk.
z. = e

This is a Vandermonde matrix(ref.6) and us,, may be made of its special
properties. Furthermore, if the k. are chosen to correspond to N arrival

3
directions, equispaced in sin 0, and lying between ±9/2 then V is simplified to:

V.. zi)

where

z = e47rid/XN

For such a V. W, defined as (VHV)/(KN) and the matrix to be used in the
amplitude iteration, is given by:

S (z -1 .)|

PA N (P")(z -1 )I

= WV

where V = p - i. The matrix W 03 WT can be readily reduced to:

1 sin2 j {P -i)

sin -- (P - )

1 - X,
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which, apart from the N2 factor, is the polar response of a line array of K

equispaced receivers. Since both W and W 0 wT are Toeplitz it then follows
that the term:

N-1

V=O

in the iteration becomes:

N-I

V=O

This is simply the result of the first N terms of the cyclic convolution of the
vector:

(u 0 , uI , ... P u I UNI U= .... ,Ul 0) T

with the vector:

(n) ( n) z(n) 0 0 0

As a result, if N is chosen to be a power of two, then the convolution may
be efficiently evaluated by use of the fast Fourier transform. Unfortunately

the z.n +l ) for j = N, ..., 2N-1 produced by this cyclic convolution are not
3

zero and so the iteration cannot be effected completely in the transform space.
This can alternatively be realized by observing that U" is not in general,
Toeplitz. (Aside: the method proposed by Bracewell and Roberts assumed that
the iteration could be effected completely in the transform domain. This
amounts to assuming the array distribution to be cyclic and so is why they only
succeeded in deconvolving the array shading).

V is generally of full rank and so V x, the limit of the amplitude
iteration, may be written as:

V (VV11fx

In particular:

(NO) = (z -)N

PpA (p-A)
(zand - 1)

and is a complex Toeplitz matrix.
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Efficient algorithms exist for the inversion of this matrix enabling V+ to

be rapidly calculated. For the particular case of K = N then V+ = V-1 and
once again, since V is a Vandermonde matrix, it may be efficiently inverted.

Similarly AlHA can be shown to be a Toeplitz matrix and is non-negative since
all its elements are positive.

Some examples of these for various values of N, K and d/A will be given.

5.1 K receivers and 1 plane wave

In this case V is the K x 1 column vector and V+ trivially reduces to

VHT which is the conventional processor. The iterative equation for the

amplitudes reduces to

y(n) = y(O) + (X - )y(n -l)

which for X = 1 becomes y(n) = y(0) as would be expected.

5.2 K receivers and N sources at half wavelength spacing

When d = X/2 it follows that zN = 1 with the result that:

VVH = NIK

where IK is the K x K identity matrix. As a consequence the first step

in the iteration equation:

y(1) = y(0)+ (XIVHV)VHx

reduces to:

y(1)= y(0) + I y(O)
1

For X = - the first, and consequently all successive iterations, reduce to
the conventional beamformer. It also follows that, for ) = 1, either as a

consequence of the iteration or the fact that V+  - , the limit y reduces

to the biased estimator, Furthermore since (V+V) the
N F s e N

standard solution 6 , corresponding to unity response in the look

direction, is obtained.

5.3 K receivers and K sources at quarter wavelength spacing

The number of independent beams lying between - V and for a

conventional processor at a quarter wavelength is N. The first of these

is plotted in heavy lines in figure 1. The extra N beams incorporated
2

in V are redundant beams spaced half way between the adjacent independent
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beams; the first redundant beam is plotted in dashed lines in figure 1.
Now wp(=WP+p,) essentially the array polar diagram is given by:

p- 2

w 2 for P oddp N2(zP _ 1)

= 0 for p even : 0

1 for P = 0.- N

Consider the leakage of yo into the other beams; from figure 1 zero power

will leak into the even-number beams since they correspond to nulls in the
polar diagram (this is reflected in the fact that wp = 0 for p even). The

power leakage into the odd beams is given by Wpy 0 where wp is given by aboveth
and y0 is the output of the zero beam. Thus the form of Wp enables the

leakage from yo (and in general all the beams) to be removed from the other

beams as discussed in Section 2.
Some other points follow from this interpretation of the deconvolution

technique. In figure 1 the side lobes of any beam are shown extending into
what is termed the 'non-physical region'. This region corresponds to plane
wave disturbances either generated in the array of receivers or propagating
across the array with a velocity less the cne assumed in calculating the
phase delays. It is an inherent assumption of these examples that the
amplitude of any of these effects is zero or at least very small. Some of
these wave-number beams could be incorporated in V but unfortunately any

N
attempt to account for the full _- (at a quarter wavelength) independent ones

2+ A
would, since the matrix W becomes circular, reduce V to VH; the conven-
tional processor. Once again this can be intuitively seen from a
consideration of the zeros of the polar diagram.

6. CONCLUSIONS

Estimates of the angular distribution of the power incident on an array made
by using the outputs of a conventional frequency-domain beamformer are distorted
by leakage from one beam to another. Two techniques have been proposed in this
paper which use a knowledge of the polar response of the array to minimise this
leakage. The techniques are conceptually similar, the difference being that
one uses the complex beam outputs whereas the other uses the beam powers.
Both techniques can be effected as a series of iterative deconvolutions using
either the narrowband array amplitude or polar response and the narrowband beam
outputs or powers respectively of a conventional beamformer. Alternatively
either the receiver outputs or the receiver crosspower spectral matrix may be
used directly to evaluate the limits of the two iterative methods. In practice
the choice would be determined by implementation requirements.

A particular attraction is that the techniques are linear and so the concept
of a polar diagram is useful. The convergence of the iteration as a function
of the parameter A and the stability of the matrices to be inverted are areas
warranting further investigation.

!
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APPENDIX I

A VECTOR IDENTITY

Given:

z(0) = Uz (i)

and z (n) is defined by the recursive relation:

z(n) : z(0) + (I - U)Z(n -l) (1.2)

it is required to show that:

z(n) = - (I - U)n+I)U-z (0 )  (1.3)

where U is any generalized inverse of U.
Before proceeding with an inductive proof, it follows directly from

equation (1.1) and the property of UU-U = U for any generalized inverse that:

UU-z ( 0)  = z() (1.4)

where

z(0) = y(0) or s ( 0)

Assuming that (1.3) holds for z (n-) and then substituting for z(n- l)
equation (1.2) reduces to:

z(n) = +() *(I- U)(I - (I -U)u-z 0 )

()(0) n~lUZO= z - UU-z (0  + (I - (I - U)

= (I - (I - u)n+l)U-z(O)

where the last step follows directly from (1.4). To complete the induction
it is necessary to prove equation (1.3) when n = 0. For n = 0 equation (1.3)
reduces to:

z(0) = UL-z ( o )

which follows directly from (1.4). (n)
The proof is completed by showing that z defined by equation (1.3) is

unique for any choice of U-.
Now any generalized inverse of U, U1, can be written as
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U1  U + (I-U-U)X + Y(1-UU )

foi- arbitrary X and Y.
Thus

UIZ (o) = j C:Z~) +(I-U-U)X C:) + Y(I-UUf)z(o)

= UZ~o +(1-U-U)Xz(o)

by virture of equation (1.4).
Hence equation (1.3) is unique if

But

(I _ (I-U)n) (I _ U.CU) = (1 + (I-U)+. . .. +(I U)n- )U (I - u) 0

Thtis z ()defined by equation (1.3) is unique.
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APPENDIX II

CONVERGENCE OF A SERIES

In order to show that the geometric series I + (XI - W) + ... + (XI -W)
n

converges as n - 0 it is necessary to show that lir XI - W)n as n is zero.
A necessary and sufficient condition for this is that all the eigenvalues of
XI - W are less than 1.

vHv
Let P(< K) be the rank of W a K x K matrix defined by W = where V is

any K x K matrix. It always holds(ref.5) that:

w = QH AQ (I1.1)

whre A d~ 2  x2  . x2  o, o, o.where A =diag 0 ' 0

and Q= Jqij is a unitary N x N matrix.

Convergence of the geometric series I + (XI - W) + ... + (XI - )n is
guaranteed provided:

IX-X.I <1 i = 1, 2, ... , P1

and

These two conditions can be seen to be satisfied provided 0 < X < 1 and
IX .I1 1. The first condition can easily be satisfied by an appropriate choice

1

of X.

If the eigenvalues of the matrix vHv are Iti it follows that the eigenvalues

of --L V are less than or equal to unity. Since vHv is positive definite,
JAmax

i.e. P. = X 2  it follows that:1 1

P

~max P
i=l

"lowever, it holds that:

P

$i-- Tr(VHV)

I'-t . .- ,-,,,., _ .
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and substituting for V the above equation reduces to:

__ NK

Thus

Amax

with the equality only holding when VV has one non-zero eigenvalue. For
N > 1 this pathological case corresponds to all colurns of V being identical
and can be disregarded. Thus the choice:

A
NK

always ensures convergence when V is of rank greater than unity although it
should be realized that any normalizing factor greater than X will alsomax

guarantee convergence. For example if VA is such that all eigenvalues are
equal then:

N +

satisfies the convergence requirements.
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